PCR amplification of DNA is arguably one of the most important technology developments in the history of molecular biology, because without PCR, many commonly employed lab techniques would not be possible. It’s both robust and simple. Yet, there are still parts of the method that could be further refined—especially when it comes to sensitivity and error rate.This article is a nice review of the previously described SiMSenSeq paper.
For researchers working in the cancer field, locating extremely rare variants from complicated mixtures of DNA, proteins, RNA, and other biomolecules is often a daily task. But identifying ultra-rare variants of these molecules presents a huge challenge—it’s like finding a needle in a haystack, a process that can be confounded further by PCR errors. This is another area where developers are finding fertile ground for improving PCR methods and protocols.
Anders Stahlberg from the University of Gothenburg in Sweden, along with colleagues from Boston University School of Medicine and the Ontario Institute for Cancer Research, recently described a new multiplex PCR-based barcoding strategy that can be used for the detection of ultra-rare mutations by next-generation sequencing.
Monday, April 17, 2017
PCR's Next Wave
On BioTechniques: